R&D and Deployment of EV charging infrastructure in KOREA: Progresses and Outlook

IERE CLP-RI Workshop - Smart Cities

November 23, 2016

Kijun Park KEPCO Research Institute

- I. Introduction
- **II.** Deployment Goals: EV and EVSE
- **III.** Promotion plans of KEPCO
- **IV.EVSE and infrastructure R&D Highlights**
- **V.** Conclusion

Components of EV charging infrastructure

1. Power delivery 2. EVSE (Charger) 3. Charge Interface 4. Information system

EV charging methods

Direct/Plug-in

Battery Exchange

Wireless Induction

□ History of Plug-in type Electric Vehicle Supply Equipment (EVSE)

Application	Public Quick Charge	Home, Parking lot	Portable charge
Power rating	~50 kW	~7 kW	3.2 kW
Typical Charge Time*	20~30 min	4~6 hours	8~9 hours
Cost	70m	4~7m	<1m

*For EV with 28kWh battery, ie. IONIQ

EV sales in Korea

□ Installed EVSEs (Fast & slow chargers)

- Slow chargers: 2,964 (2014)
- Quick chargers: 337 at Major cities and Highway (2015)
- KEPCO chargers: 131 at highways and business sites (52 in Jeju) ('15) → 614 in 2016

		Highway	Major	Major Other regions				
YEAR	IOTAL	підпімаў	Cities	Capital	Kyungsang	Jeolla	Chungchung	Kangwon
2011~2014	237	16	154	43	9	6	6	3
2015	100	30	5	11	18	25	7	4

Source: www.ev.or.kr

EV charge rates for Home and Fast chargers

	Domond	Energy charge (krw/kWh)						
Class	charge (krw/kW)	Time period	Summer (Jun.1~Aug.31)	Spring/Fall (Mar.1~May.31/ Sep.1~Oct.31)	winter (Nov.1~Feb.28)			
		off-peak load	57.6	58.7	80.7			
Low Voltage	2,390	mid-load	mid-load 145.3		128.2			
		peak-load	232.5	75.4	190.8			
High Voltage 2,		off-peak load	52.5	53.5	69.9			
	2,580	mid-load	110.7	64.3	101.0			
		peak-load	163.7	68.2	138.8			
Fast Charger		off-peak load	284.2	285.2	301.6			
		mid-load	342.4	296.0	332.7			
		peak-load	395.4	299.9	370.5			

Category by season and time slot

Time clot	Summer, Spring and Fall	Winter
Time Slot	(Mar. ~ Oct.)	Nov. ~ Feb.
Off-peak load	23:00 ~ 09:00	23:00 ~ 09:00
Mid-load	09:00 ~ 11:00, 12:00 ~ 13:00, 17:00 ~ 23:00	09:00 ~ 10:00, 12:00 ~ 17:00, 20:00 ~ 22:00
Peak load	11:00 ~ 12:00, 13:00 ~ 17:00	10:00 ~ 12:00, 17:00 ~ 20:00, 22:00 ~ 23:00

Source: www.kepco.co.kr

Deployment goals

Environmentally friendly cars deployment plan (Government Goals)

Expectations and Outcomes

Deployment goals

□ Plans to accelerate deployment of EVs and EVSE

• (Quick charger) 637 chargers at highways for long distance driving (~ 2017)

→ Large scale public charge station (KEPCO)

- (Slow charger) Portable chargers and EVSE for Apartment complex (KEPCO)
- (Battery exchange) Demonstration project in Jeju Island

□ Goals for EVs and Fast charger deployment

Items	2014	2015	2016	2017	2018	2019	2020	2025
pHEVs (x1,000)		2	3	8	18	21	50	
EVs (x1,000)	3	6	16	46	86	136	200	500
Public Quick Chargers	232	432	487	637	830	1,000	1,400	3,300
Range (km)	160	200	230	230	270	270	300	

□ Incentives for home EVSE installation

Year	2013	2014	2015	2016	2017
EVSE Installation Incentives (million, krw)	8	7	6	4	-

□ Other Incentives, subsidies and supports (2016, krw)

- EV Subsidies: 12m (FCEV: 27.5m, HEV: 5m, HEV: 1m)
- EV Tax incentives: up to 4m
- Local Gov. subsidies: up to 8m (Suncheon)
- Specialty EV-only number plate design
- Mandatory EV-only parking lot and EVSE for new apartment complexes

R&D support plans (~ 2020)

- Improve EV performance: 150% (range: 200 km → 300 km)
- Cost reduction of 40% for FCEVs
- Invest KRW 150bil. for 5 years in environment friendly car R&D

Open type EV charging station construction

→ To promote EV deployment and pave way to new business model

Small scale public charging station construction

District	Seoul	Jeju	Daegu	Gwangju	Gyeongsang nam-do	Total
Station	60	60	12	12	6	150
Charger	100	106	34	44	16	300

Large scale flagship station: KRW 29.6 billion (3 stations, 100 chargers)
 Case station type: KBW 80.0 billion (5 stations, 100 chargers)

Gas station type: KRW 80.0 billion (5 stations, 100 chargers)

Promotion plans of KEPCO

EVSE deployment for apartment complex (krw 100b, 2016)

- Apartment home accounts for >60% of residences in Cities
- To promote EV sales for residents of apartment complex
- Expansion of L2 charger number to 30,000 (MOTIE)

Integrated operation platform for EV charger infrastructures

Background

- Nationwide Star-Network and Large-scale public/Flag-ship station construction
- Opening of charge station to the public and billing of charged electricity
- Remote control, self-diagnosis, reservation function
- Charger availability, roaming of charge service carrier, payment transaction
- Control of charge demand to reduce peak load

Smart grid based carbon free island - Jeju

- Switching to EV and 100% of Energy independence
- CO₂ reduction of 90%↓
- Job creation : 50,000 positions

Category	As-Is (2016)	То-Ве (2030)
Infra	 AMI - 70 thousand units (19%) FV - 2.366 cars (0.6%), FVSF: 486 units 	 AMI – 360 thousand units (100%) FV: 377,000 (100%), FVSE: 4,300 units
Power grid expansion	 HVDC #1, #2 - 400 MW Renewable energy - 282 MW ESS - 19.3 MW 	 Additional, HVDC #3 - 200 MW Renewable energy - 4,311 MW ESS - 1,300 MW
Consumption effectiveness	Delay of efficiency solutions for customersAbsence of integrated management of energy information	 AMI based optimization of power consumption Integrated E-information management center

Phase I (~2018)	Phase II (~2025)	Phase III (~2030)
 Infra construction (AMI, EVC) Integrated management system 	 Renewable energy & ESS expansion Early construction of HVDC #3 ('25→'21) 	 Completion of Smart Grid Jeju CFI completion

Development of EV charging information system

- Period: Nov. 2012~ Oct., 2014
- Budget: 1,450M (krw, KETEP & KEPCO)

OUTCOMES:

SOMAS

L

PLAS

(부하분석서버)

DL부하분석

DL Load Analysis

WS DATA I/F

module

Parser

Logger

WS Server/ Client

- EV charging information contents & HMI
- Smart Charging Operation System (SCOS)
- Charging infrastructure Operation System(CIOS)
- EVSE SCOS CIOS Protocol & standards

□ Development of the V2G AC charging system

- Period: January, 2015 ~ December, 2017
- Budget: 2,010M (krw, KEPCO)
- Partners: KEPCO KDN, PNE, KAIST

OBJECTIVES:

- Development of V2G charge infra operation algorithm and system plans
- Development of 1:N socket type V2G AC charger
- Field demonstration of V2G AC chargers

□ Service integrated V2G development & demonstration

- Period: June, 2015 ~ May, 2017
- Budget: 4,774M (krw, KETEP & KEPCO)
- Partners: HMC, MOBIS, KEPCO KDN, PNE, I&CT, Nemo, Nextel

OBJECTIVES:

- Development of V2G business model and policy
- EV and bi-directional charger technology for V2G application
- Field demonstration of V2G EV, bi-directional chargers, operation system

***** AC Charge and Discharge test

□ Construction of Security infrastructure for Smart Grid vulnerability test & analysis

- Period: March, 2015 ~ December, 2017
- Budget: 4,570M (krw, KETEP & KEPCO)
- Partners: KSGI, NSR, KEPCO KDN, KOIST, JejuEVS, etc.

OBJECTIVES:

- Vulnerability analysis for EV charge infra cyber security
- Development of Smart-grid virtualization system and vulnerability analysis automation
- Construction of EV charge infra cyber security analysis test-bed

Development of 6.6 kW Wireless Power transfer EV charger

- Period: June, 2015 ~ May, 2018
- Budget: 6,300M (krw, KEIT & KEPCO)
- Partners: Green Power, KAIST, KATECH, BNS soft

OBJECTIVES:

- Dev. of 6.6 kW resonant type WPT system (>90% @20cm Air gap)
- EV WPT charger characterization system (SAE & IEC std.)
- WPT-EV integration and field demonstration of WPT EV and charger

Development of 6.6 kW Wireless Power transfer EV charger

- Wide range of air gap: $Z = 150 \sim 200 \text{ mm}$ •
- **High Efficiency:** •
- **Wide range of tolerance:** $X = \pm 75$ mm, $Y = \pm 100$ mm
- **Interoperable :**

- > 90% (AC to Battery), > 95% (coil to coil)

 - Compatible with 3.3 kW RX pad

- Not only incentives but also customer friendly policies and technology should be integrated with the EV charging infrastructure deployment plans.
- EVs will become a sizable part of utility customers as the number of EV increases and the capacity of the battery increases.
- V2G and V2x technology will play a role as DER for utility operation and home-grid integration.
- Wireless charging technology will be a standard option for upper class
 EVs and autonomous e-vehicles.

